
Unidirectional Link-State Routing with Propagation Control

Lichun Baoy J.J. Garcia-Luna-Acevesz

y Computer Science Department
z Computer Engineering Department

Baskin School of Engineering
University of California, Santa Cruz, California 95064

E-mail: y baolc, z jj@cse.ucsc.edu

Abstract— Unidirectional links can occur in wireless networks
and mixed-media networks. However, the vast majority of routing
algorithms proposed to date require bidirectional links to operate.
We present an efficient link-state routing algorithm, which we call
ULPC, that operates with unidirectional links. ULPC is based on
the concept of “inclusive cycle” of a link, which is the distance that
link-state updates about the link must propagate to ensure correct
routing within the network. ULPC incrementally disseminates and
selectively utilizes unidirectional link-state information to build cor-
rect routing tables. ULPC is verified to be correct. Simulations on
a 20-node network with unidirectional links show that ULPC is su-
perior over the traditional link-state routing algorithms relying on
topology broadcast.

Keywords— Link-state routing, unidirectional link, inclusive cy-
cle.

I. INTRODUCTION

Routing protocols are typically categorized into dis-
tance vector algorithms (DVAs) and link-state algorithms
(LSAs). An LSA uses complete [14] or partial [2], [9],
[10] network topology to build preferred routing paths.
A DVA uses vectors of distances to destinations reported
by neighbors to build routing tables [12], [15]. Although
many DVAs and LSAs have been proposed, the vast ma-
jority assumes networks with bidirectional links, which is
a problem, because networks with unidirectional links are
found in many communication systems, such as wireless
networks and mixed-media networks integrating hetero-
geneous transmission media. Unidirectional links may ex-
ist in a network due to differences in transmission power,
code rate, terrain, antennas used, transmission media used
among routers, and other reasons. A network with uni-
directional links is called adirected network. In spite
of the need to support unidirectional links in wireless
and mixed-media networks, we found limited research on
routing in directed networks [1], [3], [11], [16].

Link state algorithms based on topology flooding
seemed a viable solution for unidirectional routing [13],
[7]. Meanwhile, the IETF working group on unidirec-
tional link routing (UDLR) [5] found another way, which
disguises the unidirectional implication of the network
through encapsulating and tunneling of IP packets at the
link layer. These approaches are limited in that they as-
sume communication networks to be strongly connected
and the underlying transmission protocol to be reliable.

This work was supported in part by the Defense Advanced Research
Project Agency (DARPA) under grant F30602-97-2-0338.

Dabbous et al proposed a circuit-based link-state ap-
proach for unidirectional routing [6], [8], [17]. To find a
route to a destination, a circuit including both source and
destination is first detected, and then is validated by send-
ing a validation message along the circuit. If a validation
successfully goes through the circuit, a bidirectional com-
munication can thus be established between source and
destination using paths in each direction on the circuit.
However, when the network grows larger, the number of
circuits maintained in the network becomes formidable
and the algorithm has to resort to other tools, such ason-
demand routingto nodes that are far away.

In this paper, we present, verify and simulate a new
link-state routing protocol for directed networks, which
we call ULPC (unidirectional link-state routing protocol
with propagation control). Networks are assumed to have
no hierarchical routing. The minimum requirement for a
link to be used for packet routing is for it to have anin-
clusive cyclein the network. To discover the inclusive
cycle, each link state includes a cycle size property. The
link state is propagated in the network as far as the dis-
tance from the tail of the link to current node is less than
the cycle size. In case the link has an inclusive cycle in
the network, the head of the link is able to receive the
link state and notice the existence of the downstream link.
The cycle size of a link state is initialized to a maximal
threshold which causes the link state propagated within a
limited distance in the network. When the inclusive cycle
is found, hopefully of smaller cycle size, the propagation
mechanism further limits the distance that the link state
propagates and network resources are saved. If the inclu-
sive cycle breaks, the cycle size of the link state is reset to
the threshold, which starts another search.

Section II specifies the network model as well as vari-
ous concepts and notations used in this paper. Section III
describes the basic operations of link vector algorithms
used by ULPC. Section IV presents ULPC. Section V ad-
dresses its correctness. Section VI presents the results
of simulation experiments on a network with 20 nodes,
which show that ULPC is more attractive than the tra-
ditional link-state routing approach based on topology
broadcast.

II. NETWORK MODEL

A network is modeled by a directed graphG = (V;A),
whereV includes a set of nodes (routers) each with a

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Unidirectional Link-State Routing with Propagation Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

TABLE I

NOTATIONS

u � v Physical link(u; v) 2 A.
liu�v Link state ofu � v reported byi.
i =) j A path fromi to j.
i 7�! j The shortest path fromi to j.
@iu�v Inclusive cycle ofu � v found ati.
dpiu�v Discovery path foru � v found ati.

TGi The network topology known by nodei.
SGi Source graph (i.e., the shortest path tree) of nodei based

onTGi.
DGi Discovery graph, which is part of transposed network

topology at nodei to find inclusive cycles.
Ui The set ofi’s upstream nodes.
Di The set ofi’s downstream nodes.

l 2 i =) j Path fromi to j contains linkl.
ju � vj The cost of linku � v.
ji =) jj The cost of pathi =) j, i.e., ji =) jj =P

u�v2i=)j
ju � vj.

p1 + p2 Concatenation of two pathsp1 andp2.

unique ID number, andA � V � V is the set of directed
links. A bidirectional link between two nodes is repre-
sented by two unidirectional links. Link(u; v) 2 A if and
only if v can receive information fromu. Nodeu is called
the heador upstream nodeof the link andv is the tail
or downstream node. We assume that information prop-
agates through a link with non-zero probability. We also
use the notations shown in Table I to represent topologies,
data structures, and the operation of ULPC.

The inclusive cycle of a linkis the smallest cycle that
includes the link on its path. The inclusive cycle for link
u � v can be denoted as

@u�v = u � v + v 7�! u = u � v 7�! u

In case of a bidirectional link, we have@u�v = u�v+v�u =
u � v � u. Thecycle sizeof a link is the summation of link
costs on the inclusive cycle.

Thediscovery pathof a link is the shortest path from the
tail of the link to current node. For example, the discovery
path for linku � v at nodei is the shortest pathv 7�! i.

A link statelu�v contains following properties:

lu�v:h ID of headu;
lu�v:t ID of tail v;
lu�v:c The cost of linku � v;
lu�v:cs Inclusive cycle size;
lu�v:sn Sequence number of the link state;

III. LINK VECTOR ALGORITHMS

The link vector algorithm (LVA) introduced in [9] is
a link-state algorithm in which each node maintains a
source graph(e.g. the shortest path routing tree when
using Dijkstra’s algorithm) and adjacent links. Upon dis-
covery of a new neighbor (and a new link), the node sends
its complete source graph to the neighbor and reports in-
cremental changes of its source graph thereafter. The col-
lection of source graphs reported by the neighbors of a
node comprises the topology information about the net-
work. The parameters of a link state can be changed only

by its head node. For a given link, a node also records the
set of neighbors that report the link in their source graphs.
Link-state updates includes link parameters for the link,
and anoperation codeon the link. The operation code is
either ADDITION or DELETION, depending on whether
a link state is more recent or is no longer used in the source
routing tree at the reporting node. When a link state is re-
ceived with DELETION code, the corresponding neigh-
bor is deleted from the set of reporting neighbors for the
link state. If the set of reporting neighbors is empty, the
link state is deleted from the topology graph. LVA was
shown to greatly reduce communication overheads found
in link-state algorithms based on topology broadcast. LVA
has been proven to converge within a finite amount of time
after any sequence of topology changes.

ULPC adapts the mechanisms used in LVA to directed
networks, in which neighbors on a unidirectional link can-
not communicate directly. It is only after an inclusive cy-
cle for a link is discovered at both head and tail of the
link, that the downstream neighbor can send its complete
source graph to its upstream neighbor via the path on the
inclusive cycle. Furthermore, as shown in section IV-A.3,
the inclusive cycle size is to be determined by the head of
the unidirectional link.

IV. ULPC

ULPC consists of three parts: theneighbor protocol
(NBR), thepath computation protocol(NET) and there-
transmission protocol(RET). NBRprovides mechanisms
for a node to detect upstream neighbors, update cycle
sizes of downstream links, and propagate link states that
satisfy Eq. (1) formulated in Section IV-A.2.NET com-
putes the source graph (shortest-path tree) of the node
based on Dijkstra’s algorithm and exchanges routing in-
formation between neighbors.RET maintains a list of
packets and keeps retransmitting upon timeouts, until the
node receives acknowledgments for these packets from
destinations or destinations stop being neighbors.

A. NEIGHBOR PROTOCOL

NBRmaintains three data structures,Di, Ui andDGi.
Ui contains data for detecting and maintaining incoming
(upstream) links. Outgoing (downstream) links are saved
in Di, and can be used in routing as long as their inclu-
sive cycles exist.DGi is a transposed graph used to find
inclusive cycles of upstream links.

A.1 Link Detection

A HELLO packet is periodically broadcasted by a node
to inform neighbors of its existence. However, if other
packets are sent out during the interval of HELLO pack-
ets, the next HELLO packet is suppressed. On periodic
detection of packets from a neighboring node, sayu, a
nodei creates a link statelu�i andu becomes one ofUi.
Without loss of generality, the cost for an active link is set
to 1, thuslu�i:c = 1. If the link disappears,lu�i:c is set to
1 by i.

A.2 Inclusive Cycle

Communicating between a source-destination pair of
nodes using unidirectional links in the network, it man-
dates a directed circuit, which naturally implies an inclu-
sive cycle for each link that is utilized in routing that com-
munication data.

An inclusive cycle is the only way for a link state to
propagate back to the upstream node efficiently, so that
the upstream node can be informed of whatever happens
to the link. Without considering an inclusive cycle in
routing decision at the upstream node, the upstream node
might keep using an outdated downstream unidirectional
link when the the inclusive cycle is gone and the new link
state can not be propagated back to the upstream node. To
indicate the existence of an inclusive cycle for a link, a
cycle sizeproperty is maintained for the link.

ULPC handles the discovery of inclusive cycles inNBR
using the discovery graphDGi at nodei. Nodei propa-
gates a link state to its downstream nodes if the link state
satisfies the following formula:

jdpiu�vj < jlu�v:csj (1)

wheredpi
u�v

= v 7�! i is thediscovery pathfor link u � v
at nodei, andlu�v:cs is the cycle size property of linku�v.
DGi is represented by:

DGi = fl j 9u � v 2 A(l 2 (u � v 7�! i)
^ jv 7�! ij < jlu�v:csj)g

(2)

Therefore,DGi maintains link states satisfying Eq. (1)
and others residing on discovery paths. Whenever there
is a change inDGi, i propagates the change to its down-
stream nodes.

To find the shortest path termv 7�! i in DGi, links are
transposed inDGi, i.e., link u � v is stored as linkv � u.
Thenv 7�! i in (2) is discovered in the shortest path tree
by running Dijkstra’s algorithm onDGi.

ULPC sets the cycle size of a newly discovered up-
stream link to a negative number�Plim, which stands for
propagation limit. According to Eq. (2), the link state
with �Plim will only be propagated within a radius of
Plim + 1 from the tail node. This is important, because
we require that a link state have a positive cycle size to be
used in routing; therefore, by initializingl:cs to�Plim, a
link state will not be used in routing until it is propagated
back to its head if it has an inclusive cycle of size less
than or equal toPlim + 1 and the head sets the cycle size
property of the link to the actual cycle size, positive.

We set a limit on the cycle size of a link state because
of two reasons. First, most links in a network topology
have small inclusive cycles even for satellite links. Sec-
ond, we do not want to utilize a link with large inclusive
cycle because the cost of coordinating routing information
between neighbors on a unidirectional link is too much.

With NBR, the headu of link u � v receives the state of
u � v because every node on inclusive cycle@u�v will keep
propagatinglu�v according to (1) until it reachesu.

WAITING INVALID

NEW CONNECTED

Link Up

Link Broken

Inclusive
 Cycle
 Broken

Link
Broken

Send Complete SG

Inclusive
 Cycle
 Found

Fig. 1. State Transitions of Upstream Node

A.3 Cycle Size

The cycle size of a link state is decided by the head of
the link. Though it seems natural to let the tail of a link
solely determine the link state, this may cause problems.
As an example, suppose a linku � v comes into existence
and its inclusive cycle is discovered by the tailv. Now
the link statelu�v has to propagate via the inclusive cycle
again to get to the headu. Not untilu knowslu�v:cs > 0,
canu use the link in routing. Accordingly, two iterations
through the inclusive cycle are needed for a link to be uti-
lized in routing. Furthermore, suppose the inclusive cy-
cle is broken, and the link also disappears subsequently;
it happens that the upstream node still assumes the exis-
tence of the link and has no way of recovering from that
fault.

The upstream of a link node decides its cycle size for
the sake of both efficiency and safety of routing. The sce-
nario of the previous example is: whenu finds out the
inclusive cycle of its downstream linku � v in DGu, u up-
dates the link state and propagates according to Eq. (1).

The timeliness of a link state is determined with a se-
quence number. A problem arises if two sources, head and
tail of a link, can change the sequence number of the link
state. We solve this problem by letting the downstream
node increase sequence number whenever it observes a
newer upstream link state from an upstream node.

The following algorithms resolve the sequence number
for a link state. Nodeu detects the inclusive cycle and
determineslu�v:cs, while nodev accepts any change on
cycle size made byu for lu�v and increments the sequence
number.

Procedure at headu:
/* Found@u�v in DGu. */
if (j@uu�v j 6= luu�v:cs) f
luu�v:cs j@

u
u�v j;

lu
u�v

:sn lu
u�v

:sn+ 1;
propagate lu

u�v
;

g

Procedure at tailv:
/* Receivedluu�v from u.*/
if (luu�v:cs 6= lvu�v:cs) f
lvu�v :cs luu�v:cs;
lv
u�v

:sn
max(lu

u�v
:sn; lv

u�v
:sn) + 1;

propagate lvu�v;
g

(a) (b)

A.4 Neighbor States

The upstream node tableUi at nodei is used to moni-
tor incoming links. An upstream neighbor may be in one
of four states as illustrated in Fig. 1. For example, an
upstream nodeu 2 Ui in WAITING state indicates the
link u � i has been detected byi but is still unnoticed

CONNECTED

INVALID
 Inclusive
Cycle Found

 Send Last DG
Update to the Node

NEW

 Send Complete
DG to the Node

DISCONNECTINGInclusive
 Cycle
 Broken

 Link
Broken Link

Broken

Inclusive
Cycle Found

Fig. 2. State Transitions of Downstream Node

by u. The state ofu moves from WAITING to NEW
oncei gets to know thatlu�i:cs is set to positive num-
ber byu, wheni sends its complete source graphSGi to
u. Thenu switches from NEW state to CONNECTED
state and stays there as long as the inclusive cycle remains
(lu�i:cs > 0). Changes inSGi are sent tou reliably if
u is in CONNECTED state. If the inclusive cycle is bro-
ken, as implied bylu�i:cs set to�Plim, u changes from
CONNECTED state back to WAITING state. The IN-
VALID state ofu means that the linku � i disappears (i.e.,
lu�i:c =1).

A downstream node tableDi is also maintained for out-
going links (Fig. 2). A downstream node is INVALID
in the beginning, and enters NEW state if the inclusive
cycle is found ati, when i sends its complete discov-
ery graphDGi to that downstream node. Afterwards,
the downstream node becomes CONNECTED and incre-
mental changes inDGi are sent to that downstream node.
Outgoing links in CONNECTED state are given toNET
for routing. A CONNECTED downstream node becomes
DISCONNECTING if the inclusive cycle is broken until
another inclusive cycle is found to change it back to NEW
state. An outgoing link in state INVALID and DISCON-
NECTING cannot be used in routing due to uncertainty
of the downstream node. Downstream neighbors in CON-
NECTED state receive discovery graph updates reliably.

Although the head and tail of a link are separated by
a possibly large inclusive cycle to maintain their neigh-
bor relationship, we prove that they have anequivalent
view regarding the validity of the link for routing purposes
(Lemma1), that is, one of two conditions holds for a link
u � v:

1. u is CONNECTED inUv andv is CONNECTED in
Du, so thatu � v is eligible for routing atu, andv
sendsSGv updates tou.

2. Neitheru nor v is in CONNECTED state in the
neighbor table of the other side, and they do not co-
ordinate topology information.

A.5 Discovery Path Propagation

NBR requires reliable propagation of discovery graph
updates to keep correct information about inclusive cy-
cles. We run Dijkstra’s algorithm onDGi to compute the
shortest path tree and discover links that satisfy Eq. (1) as
well as inclusive cycles of outgoing links fromi. If link
states that satisfy Eq. (1) or link states that are on discov-
ery paths of these links change, a link-state update packet
is generated containing those changes and sent reliably to

its CONNECTED downstream nodes.
Some unknown downstream nodes may also receive

such an update. Since incremental updates toDGi will
cause a fragmented view of discovery paths at new down-
stream nodes, an updated link that satisfies (1) and its dis-
covery path should be packed into the same packet to keep
the integrity of a link with its discovery path.

B. PATH COMPUTATION PROTOCOL

A topological graph(TGi) is maintained at each node
by NETto compute the source graphSGi, from which the
routing tableis derived using Dijkstra’s algorithm.TGi

of nodei is composed of source graphs from its down-
stream neighbors and the discovery graph (3).

TGi = (
[

k2Di

SGk) [DGi (3)

DGi is used for routing byi to send its complete source
graph to a NEW upstream node because link states on the
inclusive cycle may not be reported byi’s downstream
nodes.SGk; k 2 Di is used for routing to farther nodes.
SGi of nodei is not represented separately fromTGi

actually, but indicated by a tag of each link-state struc-
ture inTGi. SGi is represented in Eq. (4) based on the
concept of Dijkstra’s algorithm:

SGi = fl j l = u � v
^ 9k 2 Di(i 7�! v = i � k 7�! u � v)
^ (8l0 2 k 7�! v; l0 2 SGk [DGi) g

(4)

Link-state additions, updates and deletions in source
graph will be sent reliably to CONNECTED upstream
neighbors. Each link-state entry in an update packet is
affixed with an operation code to indicate UPDATE or
DELETE operation on that link. The operation code UP-
DATE means the link is added or updated in the source
graph, while DELETE means the link state is deleted from
the source graph.

V. CORRECTNESS OF ULPC

Lemma 1:The knowledge about the link at its head and
tail is equivalent.

Proof: In ULPC, we consider two attributes of a link
statelu�v ; u � v 2 A: link costlu�v :c and cycle sizelu�v :cs.
We have to decide the equivalence of the link state at both
u andv in four cases for the algorithms (a) and (b):

1. lu�v:c < 1 and9@u�v 2 G, which means an inclu-
sive cycle exists for the link. Changes tolu�v atu orv
can get to each other byNBR. Sincev acceptsluu�v:cs
regardlessluu�v:sn and always increaselu�v:sn, uwill
accept the newlv

u�v
. Therefore,u andv will keep the

same link state aboutu � v.
2. lu�v:c < 1 and@u�v 62 G, which means the link

exists but the inclusive cycle is broken. Since the
broken point will propagate down the path on the in-
clusive cycle and get tou, u resets the cycle size to

�Plim and propagates tov. RETatuwill keep send-
ing the new link state tov for limited times (not reli-
able), so that the new cycle size of the link can get to
v.

3. lu�v :c = 1 and9@u�v 2 G, which means the link
is broken. The link state can be propagated down
the inclusive cycle byNBRreliably because the link
causesDG changes. In this case,u gets to knowlvu�v
within finite time after disappearance of the link.

4. lu�v :c =1 and@u�v 62 G, worst of which is that the
link disappears and the inclusive cycle also breaks
beforelv

u�v
is propagated tou. In this case, since

u knows exact information aboutlu�v:cs by NBR, v
knows aboutlu�v:c, bothu andv consider each other
invalid neighbor.

It thus follows that equivalence about the link state is
maintained.

Lemma 2:An upstream node can reliably get the
source graph of its downstream nodes in CONNECTED
state.

Theorem 3:Any link-state update is either propagated
to or discarded by all nodes that use the link for routing.

Proof: Suppose link statelu�v becomesl0u�v at time
T , andi uses linku � v in routing beforeT . We prove that
i either updates or discards the link in routing within finite
amount of time afterT .

A link is used for routing only if the link has finite pos-
itive cycle size. Sincei uses linku � v for routing, for any
link s � t on the shortest pathi 7�! v = i 7�! u � v,
ls�t:cs > 0 andt reports the remaining patht 7�! v to s.
Becauseu andv hold equivalent link state ofu � v accord-
ing to Lemma1, we only consider the propagation ofl0

u�v

from u in following two cases afterT :
1. 8l 2 i 7�! u, inclusive cycle@l remains. Thenl0u�v

can be propagated backward byNET to i along the
path on@l; l 2 i 7�! u, andl0

u�v
is updated ati.

2. Suppose9s � t 2 i 7�! u, s � t or @s�t breaks be-
fore l0u�v is propagated back along@s�t, theni will
not receive updatel0u�v by NET. But according to (4),
s stops usingt as next-hop tov, and stops using any
link state reported byt. Therefore,s sendslu�v with
DELETE operation code upwards toi if u �v is unus-
able byNETats. That is,8k 2 i 7�! s, the link state
of u � v with DELETE operation keeps propagating
upward ifu � v is unusable byk. Finally i discards
u � v in routing.

In any case, the propagation distance is finite, so is the
time. So the theorem stands.

Theorem 4:Updates on network topology changes sta-
bilize in finite time.

Theorem 5:When ULPC stabilizes, there is no loop in
network routing.

VI. SIMULATIONS

ULPC was simulated using the C++ Protocol Toolkit
(CPT) [4]. NBR, NET and RET use UDP packets to
exchange neighbor packet (NbrPkt), routing information

NBR NET RET

UDP/IP
SLIP

P2P Dev

NetPktNbrPkt
RetPkt
(ACK)

NetPkt
NbrPkt

RegistPkt

RetPkt
(ACK)

PktListTG,RDG,D,U

R

RetPkt
(ACK)

Fig. 3. Program Structure of ULPC

n5

n1

n2 n4

n3 n6

n7 n11 n20

n8

n10

n9

n12

n13

n14 n15

n16

n19

n17

n18

Fig. 4. Topology Graph of a Sample 20-Node Network

packet (NetPkt) and acknowledgment packet (RetPkt) of
NbrPkt and NetPkt (see Fig. 3). The physical connec-
tions are point-to-point (P2P) links in order to eliminate
considerations regarding channel access. The data struc-
tures used in each module are also denoted beside each
module box in Fig. 3, namely, topology graph (TG), rout-
ing table (R), discovery graph (DG), upstream and down-
stream node tables (D, U) and the retransmission packet
list (PktList), some of which are cross-referenced by dif-
ferent modules.

We also simulated an ideal link-state algorithm based
on OSPF [14], called OSPFC (OSPF with propagation
control), to compare with ULPC. OSPFC uses the same
mechanisms inNBRto discover usable link states for rout-
ing. Furthermore, OSPFC sends anyreachablelink-state
update to its upstream neighbors in CONNECTED state.
A link is reachable if the head of the link is reachable
through a path that is composed of links with positive
cycle size. Changes in reachability of a link state will
also generate a link-state update to all CONNECTED up-
stream neighbors. However, we don’t use operation codes
in OSPFC link-state update packets because any link-state
change is flooded in the network.

Fig. 4 is a sample network with unidirectional links.
We tried plot the topology such that a tree connects all
nodes with bidirectional links, and traditional routing al-
gorithms can also emulated by ULPC if we setPlim = 1.
However, if any of these bidirectional links breaks, tradi-
tional algorithms no longer works.

SettingPlim = 3, we collected statistics about ULPC
and OSPFC in three scenarios, namely, link deletions, link
cost increases by 1 and node deletions. In each scenario,
the number of reachable nodes, update packets inNETand

update packets inNBRsent by all nodes were summarized
at each event, respectively, and the results are plotted in
Fig. 5, 6 and 7.

We see that OSPFC sometimes found more reachable
nodes (Fig. 5) than ULPC did. This is because discovery
graphs in OSPFC take advantage of knowing the complete
topology of the network thus gets more inclusive cycles of
unidirectional links. In general, ULPC saves one third of
the network resources used by OSPFC inNETcomputa-
tions (Fig. 7), while they consume similar resources in
NBRcomputations (Fig. 6).

0 5 10 15 20 25 30 35 40 45 50
100

200

300

400

Link Deletion

Link Number

N
u

m
b

e
r

o
f
R

e
a

c
h

a
b

le
s

0 5 10 15 20 25 30 35 40 45 50
379

379.5

380

380.5

381

Link Cost Increased By 1

Link Number

N
u

m
b

e
r

o
f
R

e
a

c
h

a
b

le
s

0 2 4 6 8 10 12 14 16 18 20
100

200

300

400

Node Deletion

Node Number

N
u

m
b

e
r

o
f
R

e
a

c
h

a
b

le
s

ULPC
OSPFC

Fig. 5. Number of Reachable Nodes

0 5 10 15 20 25 30 35 40 45 50
100

150

200

250

Link Deletion

Link Number

N
u

m
b

e
r

o
f
U

p
d

a
te

s

0 5 10 15 20 25 30 35 40 45 50
140

160

180

200
Link Cost Increased By 1

Link Number

N
u

m
b

e
r

o
f
U

p
d

a
te

s

0 2 4 6 8 10 12 14 16 18 20
120

140

160

180

Node Deletion

Node Number

N
u

m
b

e
r

o
f
U

p
d

a
te

s

ULPC
OSPFC

Fig. 6. Number ofNBRUpdate Packets

VII. CONCLUSIONS

We have presented a new routing protocol, ULPC,
which adapts link vector algorithms to directed networks.
ULPC is scalable and provides a promising technique to
extend traditional routing algorithms into the regime of
arbitrary network topologies. We proved the correctness
of ULPC and compared its performance against the dis-
tributed topology broadcast approach, OSPFC. The con-
cept of inclusive cycle used in ULPC permits our general-
ization of link-state algorithms to network with unidirec-
tional links.

0 5 10 15 20 25 30 35 40 45 50
200

400

600

800

Link Deletion

Link Number

N
u

m
b

e
r

o
f
U

p
d

a
te

s

0 5 10 15 20 25 30 35 40 45 50
200

400

600

800

Link Cost Increased By 1

Link Number

N
u

m
b

e
r

o
f
U

p
d

a
te

s

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

Node Deletion

Node Number

N
u

m
b

e
r

o
f
U

p
d

a
te

s

ULPC
OSPFC

Fig. 7. Number ofNETUpdate Packets

REFERENCES

[1] Yehuda Afek and Eli Gafni. Distributed Algorithm for Unidirec-
tional Networks.SIAM J. Comput., 23(6):1152–1178, Dec. 1994.

[2] J. Behrens and J. J. Garcia-Luna-Aceves. Hierarchical Routing
Using Link Vectors. InProc. IEEE INFOCOM 98, San Francisco,
California, March 29-April 2 1998.

[3] Pomalaza-Raez C.A. A distributed routing algorithm for multihop
packet radio networks with uni- and bi-directional links.IEEE
Transactions on Vehicular Technology, 44(3):579–85, Aug. 1995.

[4] Rooftop Communications Corp. C++ Protocol Toolkit (CPT),
1997. info@rooftop.com.

[5] Walid Dabbous, Yongguang Zhang, David Oran, and Rob Coltun.
A Link Layer Tunneling Mechanism for Unidirectional Links,
April 2000. Internet-Draft, Network Working Group.

[6] E. Duros and W.Dabbous. Supporting Unidirectional Links in the
Internet. InProceedings of the First International Workshop on
Satellite-based Information Services, Rye, New York, U.S.A., Nov
96.

[7] Emmanuel Duros. Handling of unidirectional links with OSPF.
Technical report, Network Working Group, Mar. 1996.

[8] Thierry Ernst and Walid Dabbous. A Circuit-based Approach
for Routing in Unidirectional Links Networks. Technical Re-
port ercim.inria.publications/RR-3292, Inria, Institut National de
Recherche en Informatique et en Automatique, Oct. 1997.

[9] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, Scalable
Routing Based on Vectors of Link States.IEEE Journal on Se-
lected Areas in Communications, Oct. 1995.

[10] J.J. Garcia-Luna-Aceves and M. Spohn. Scalable Link-State Inter-
net Routing. InProc. IEEE International Conference on Network
Protocols (ICNP 98). Austin, Texas, Oct. 14–16 1998.

[11] M. Gerla, L. Kleinrock, and Y. Afek. A distributed routing al-
gorithm for unidirectional networks. InGLOBECOM ’83. IEEE
Global Telecommunications Conference, volume 2(3), pages 654–
8, San Diego, CA, USA, 28 Nov.-1 Dec. 1983.

[12] C. Hedrick. Routing Information Protocol. RFC 1058, Network
Working Group, Jun. 1988.

[13] Robert McCurley and Fred B. Schneider. Derivation of a Dis-
tributed Algorithm for Finding Paths in Directed Networks.Sci-
ence of Computer Programming, 6(1):1–9, 1986.

[14] J. Moy. OSPF Version 2. RFC 2178, Network Working Group,
Jul. 1997.

[15] S. Murthy and J.J. Garcia-Luna-Aceves. An Efficient Routing Pro-
tocol for Wireless Networks.ACM Mobile Networks and Applica-
tions Journal, Special issue on Routing in Mobile Communication
Networks, 1996.

[16] M. Nishida, H. Kusumoto, and J. Murai. Network architecture us-
ing network address translation mechanism for network with uni-
directional links. Transactions of the Institute of Electronics, In-
formation and Communication Engineers B-II, J81B-II(5):458–67,
May 1998.

[17] W.Dabbous, E. Duros, and T. Ernst. Dynamic Routing in Net-
works with Unidirectional Links. InProceedings of the Second
International Workshop on Satellite-based Information Services,
Budapest, Hungary, Oct. 1997.

